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ABSTRACT (Con't)

consists of exogenous arrivals and endogenous reentries from node two. The

probability of a customer feeding back is allowed to depend on the queue

length at nodes one and two and on the service time of the customer at node

one.

The system is analyzed by showing that {Xn, Tn I forms a Markov renewal

process, where T is the time of the nth output and Xn is an ordered triplet'n

consisting of the two queue lengths at time T and a binary random variablen

indicating whether the nth output departs or feeds back to node two. The

semi-Markov kernel is computed and conditions for {Xn9 T n } to be an irreducible,

aperiodic Markov renewal process with an infinite lifetime are determined. A

necessary and sufficient condition and an easily checked sufficient condition

for ergodicity are established.

Using the results about {Xn, T n}, it is shown that the joint queue length

process is a semi-regenerative process. The time-dependent joint queue length

distribution is given. The busy period of the system is shown to form a

renewal process and its interrenewal distribution is obtained.

The customer flows generate point processes. It is shown that the outputs

from node one, the feedbacks to node two and the departures from the network

are each Markov renewal point processes. It is also shown under general

conditions that if the departure process is a renewal process, the departure

process must be a Poisson process. In addition, if the departure process is a

Poisson process, either the server at node one is also an exponential server or

there are an uncountable number of initial distributions yielding a Poisson

departure process.

In analyzing the flow processes, a result is derived which has interest

independent or queues with feedback. Consider a right-continuous Markov process
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ABSTRACT (Con't)

{X(t): t > 0} with left hand limits and an invariant probability measure P.

It is shown that if {Tn I forms a non-anticipating Poisson point process and

if {X(Tn-)} is a Markov chain, then is a stationary distribution for
n

{X(T -)). This result implies that the distribution seen by Poisson arrivalsn-

to a queueing network is the same as the distribution at an arbitrary point in

time.
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CHAPTER I

INTRODUCTION

In this dissertation we analyze a two server queueing network

with feedback. Chapter I provides an overview of this subject and of

this dissertation. In the first section of Chapter I, we supply some

background on the subject of queueing networks and feedback in queueing

networks which provides motivation for analyzing the M/G/l queue with

delayed feedback. Section two contains an informal description of the

M/GI queue with delayed feedback. Section three reviews the literature

on queueing systems with feedback. Section four describes the main

results of this dissertation. In section five the organization of the

dissertation is explained. It contains a description of the ntmbering

scheme for chapters, theorems, lemmas, etc. and a brief account of the

contents of the remaining chapters.

1. Background Remarks

The field of queueing network theory dates back at least twenty-

five years to R. R. P. Jackson's (1954) paper on two M/M/I queues in

tandem. Recent interest in modelling computer systems and computer-

comunications networks has spurred growth in queueing network theory.

Two different philosophies on the analysis of queueing networks have

evolved. The first approach analyzes the queueing network as a whole.

The second approach involves decomposing the network into subnetworks

and analyzing each subnetwork separately. In order to do this, the

1
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departure process of each subnetwork must be characterized as well as

the superposition and decomposition of flow processes in the network.

This interest in the flow processes has gradually led to the realization

that queueing networks with feedback are fundamentally different from

queueing networks without feedback. Burke (1976) first exhibited this

difference when he showed that the input process of the M/M/l queue with

instantaneous feedback is not a Poisson process. Since all flow proces-

ses in Jackson networks without feedback are Poisson processes, the

introduction of feedback has fundamentally altered the input process.

Subsequently, Foley (1977) proved that the output process of the M/M/1

queue with instantaneous feedback was not even a renewal process.

Despite the marked difference in queueing networks with feedback,

the literature contains only a handful of theoretical papers analyzing

queues with instantaneous feedback and even fewer studying queueing

networks with delayed feedback. These queueing systems are important as

evidenced by the many applied papers modelling systems as queues with

feedback. Disney and Wyszewianski (1975) survey over 200 papers which

model computer systems as queues with feedback.

Thus a detailed analysis of the M/G/l queue with delayed feed-

back will be useful to practitioners modelling real world systems with

delayed feedback. Furthermore, it will provide insight into understand-

ing more general networks.

2. Informal Problem Description

A queue with delayed feedback consists of a queue in which cus-

tomers completing service either depart from the system or feed back to

a delay system. A fed back customer is delayed for a random length of

time before reentering the queue (see fig. 1).
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reentry .feedback
process process

f Delay* I
* 4

arrival input I output departure
process process process process

Fig. 1. A Queue with Delayed Feedback

We have chosen to model the delay mechanism as a single server

queue with exponential service times and an infinite queue capacity.

Other models are possible. Nakamura (1971) modelled the delay mechanism

as an infinite server queue with exponential service times. In

Nakamura's system the delay represented the time a user of a time-sharing

system spent thinking before entering another comand.

The M/G/1 queue with delayed feedback is a queue with delayed

feedback in which the arrival process (see fig. 1) is a Poisson process

and the lower server is a general server. The M/G/l queue with delayed

feedback as shown in figure 2 is the system analyzed in this paper.
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Fig. 2. The M/G/l Queue with Delayed Feedback

We have not specified how a customer is selected to feed back.

We will be more specific in Chapter II. In general the probability of

feeding back will be allowed to depend on the queue lengths at both

servers and the service time of the customer completing service.

Bernoulli feedback is an important special case in which each customer

feeds back with a fixed probability p independent of the past history

of the system. Note that the M/M/1 queue with delayed Bernoulli feed-

back is a Jackson (1957) queueing network. We assume throughout the

dissertation that customers are served using a first-come, first-serve

queue discipline and that both queues have an infinite capacity waiting

area.

* 3. Literature Review

In this section we will review the literature which pertains to

queueing systems with feedback. However, we will not review the

enormous literature on classical queueing systems which fall under the

heading of G/G/c queues. For background literature in classical queue-

ing theory, the reader is referred to Cohen (1969) and Syski (1960).



For a review of queueing network theory, the reader should consult

Disney (1975), Lemoine (1977) or the review in the beginning of Boxma's

(1977) dissertation. Disney and Wysewianski (1975) survey over 200

papers which model computer systems as queueing systems with feedback.

The H/G/l queue with instantaneous Bernoulli feedback has been

examined by several authors including Takacs (1963), Davignon (1974),

Davignon and Disney (1976), Burke (1976), Foley (1977), and Disney and

McNickle (1977). For a stationary system, Takacs calculates the queue

length distribution and derives the Laplace-Stieltjes transform of the

total time spent in the system by a customer. Even in the M/M/i queue

with instantaneous Bernoulli feedback the transform is quite complicated.

Takacs was able to determine the first two moments of the distribution.

Takacs analyzed the queue length process by finding an equivalent M/G/l

queue without feedback. The equivalent queue retains the same queue

length characteristics as well as the same departure process character-

istics.

Davignon and Disney (1977) analyze the M/G/l queue with instan-

taneous state dependent feedback. The probability of a customer feeding

back after completing service was allowed to depend on the change in the

queue length since the last service completion, the length of service

received, and whether the previous customer fed back or departed. For

this system, the authors characterize the stationary queue length process,

output process, and departure process. The busy period distribution is

also computed.

Burke (1976) used the M/M/l queue with instantaneous Bernoulli

feedback as a counterexample to the belief that the random processes

representing the flows on the arcs in Jackson (1957) networks are Poisson
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processes. Many queueing theorists and applied researchers believed

that the flows on the arcs in Jackson networks are Poisson processes

(e.g. Nakamura (1971)).

Subsequently Foley (1977) showed that the output process in the

M/M/i queue with instantaneous Bernoulli feedback in equilibrium is not

even a renewal process. This result is surprising since even though the

output process fails to be a renewal process, the departure process,

which is obtained by randomly selecting points from the output process

with a fixed probability q, is a Poisson process.

Disney and Hannibalsson (1977) analyze an M/M/I queue with delay-

ed Bernoulli feedback. The model analyzed is similar to the M/M/1 queue

with delayed Bernoulli feedback as discussed in this paper except that

each queue has a finite waiting room. The steady state distribution of

the two dimensional Markov process {N(t), M(t)} is determined where N(t)

is the queue length in the lower system and M(t) is the number in the

delay system. An algorithm was developed to numerically compute the

steady state distribution for a specific system.

4. Main Results

Our first result shows that the state of the system at output

points (see fig. 1), (X° , TO), is a Markov renewal process. Tn is the' n

time of the nth putput and X° is an ordered triplet consisting of then

two queue lengths at time T0 and an indicator of whether the customern

departs or feeds back. This provided the foundation for much of the

following analysis. The semi-Markov kernel for (X° , TO) is computed and

conditions for (X0, T0) to be an irreducible aperiodic Markov renewal

process with an infinite lifetime are determined based on the governing

sequences. The governing sequences are the interarrival times, service
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time, at the upper and lower queues, and the probability of a customer

feeding back. A condition for (X°, TO) to be ergodic is determined

which involves the invariant measure for the Markov chain X° . Since in

general the invariant measure is not explicitly known, an easily

calculated sufficient condition is also determined by applying one of

Foster's criteria (cf. Cohen (1969)).

In the following section, II.2 we examine the time dependent
queue length process, Z - {Zt 1. Z is shown to be a semi-regenerative

process with imbedded Markov renewal process (X0 , T0 ). The probability

P{Z t " (JlJ 2) I i 0 - (ii 2 ,i 3 ), To - 01 is determined and the limit-

ing distribution of Z is analyzed.

In 111.3 the busy cycle is shown to be a renewal process. The

busy cycle is the time between two successive returns to a completely

empty system. Since the busy cycle is a renewal process, we need only

describe the interrenewal distribution to characterize the process. The

interrenewal distribution is found by using the fact that successive

returns to an empty system correspond to a Markov renewal process

obtained by filtering (X° , TO).

The point processes generated by customer flows are analyzed in

111.4. The output process, departure process and feedback process are

shown to be Markov renewal processes. In particular we are concerned

with determining conditions for the departure process to be a renewal

process. We show under general conditions that if the departure process

is a renewal process it must be a Poisson process. A conjecture is

stated which, if verified, implies that in order to have a renewal

departure process, the lower server must be an exponential server.

In Chapter IV we prove some results which were used in Chapter
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III and also have interest independent of queues with delayed feedback.

We assume that we have a right continuous Markov process {X(t): t > 01

with left limits and an invariant probability measure v. We show that

if a sequence of stopping times {Tn I forms a non-anticipating Poisson

point process and if {X(T n-)} is a Markov chain, then u is a stationary

distribution for {X(T n-)}. The sequence of stopping times is non-

anticipating if the forward recurrence time until the next stopping time

after t is independent of Xt . This result can be used to show that the

distribution seen by Poisson arrivals to a queueing network is the same

as the distribution at an arbitrary point in time.

5. Organization

This dissertation is divided into five chapters and one appendix.

Chapters are assigned a Roman numeral. Each chapter is subdivided into

sections which are assigned an Arabic numeral. Hence, the third section

of Chapter IV is referred to as IV.3. Within each chapter; definitions,

lemas, propositions and theorems are assigned a name, nl~n2, where n1

is the section number and n2 is assigned consecutively within the

section. Within a chapter, the Roman numeral is suppressed. Hence in

Chapter III we might refer to Lemma 2.1, but outside of Chapter III we

would refer to Lema 111.2.1. Equations, whenever needed, are refer-

enced by an Arabic numeral in parentheses to the right of the equation

and numbered consecutively within a chapter. Figures are numbered

consecutively throughout the dissertation. Bibliographic references

consist of the author's name followed by the publication date enclosed

in parentheses.

In Chapter II we normally describe the M/G/l queue with delayed

feedback in terms of the governing sequences. The governing sequences
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are the arrivals, service times at the upper and lower queues, and the

probability of a customer feeding back. The processes of interest, e.g.

queue length process, are defined.

Chapter III contains the analysis of the M/G/l queue with

delayed feedback. The system at output points is analyzed as a Markov

renewal process. The time dependent queue length process is described

and its limiting behavior studied. The busy cycle is shown to be a

renewal process and an expression of the interrenewal distribution is

obtained.

Chapter IV contains results for more general systems than the

H/G/l queue with delayed feedback and were used in Chapter III. We

show that under certain conditions a Markov process and a Markov chain

imbedded in the Markov process have the same stationary distribution.

These results are useful in areas other than queues with delayed

feedback. In Chapter V, we summarize the results in this dissertation

and several areas of further research are discussed.

I

m . . . .. . . ..... I I I I I I I I I II



I pool',

CHAPTER II

FORMAL PROBLEM DESCRIPTION

In Chapter II, we formally discuss the problem to be studied.

Section one contains a description of the physical structure of the

queueing network. In section two, the governing sequences and assump-

tions about the governing sequences are listed. Section three introduces

notation for the processes of interest (e.g. queue length process), which

are determined by the governing sequences and the structure of the net-

work.

1. Queueing Network Structure

The queueing network contains two servers as shown in figure 3.

The lower queue will be denoted Q., and the upper queue, Q2 " Q1 and Q2

are FIFO queues with infinite queue capacities. All external arrivals

enter QI" After waiting and being serviced at QI, the customer outputs.

Some outputs depart from the system and the remainder feed back to Q2"

After waiting and being serviced at Q29 the customer reenters Q1 (see

figure 3).

10



reentry feedback
process process

Si 4

arrival- input output departure
process process process process

Fig. 3. Structure of the Queueing Network

2. Governing Sequences of Random Variables

The governing sequences are the basic random variables (e.g.

service times) from which the processes of interest (e.g. queue length)
are defined. Let {A : n-l,2,...), {S(): n -,2,...},

n n1)

n(2) : nn1,2,...} be non-negative, real valuedn : ~,,.} n Y

random variables on a complete probability space (, ,).A will
ndenote the nth interarrival time to the system; S I )  the nth service

n

time at Q1; S (2) the nth service time at Q2; and Y will be either 0

or 1 depending on whether the nth customer completing service at Q

departs or feeds back, respectively. Note that the nth arrival does

not necessarily receive the nth service time or the nth state of the

decomposition switch. {A 1, {SW(1 and [S (2))arechiidsquns
n () } are each ii.d sequences

of random variables and, furthermore are independent sequences with the

following properties:
-At

P{An < t} - 1 - e , 0 < A < i, t > 0,

P{S I  < t} - G(t), t > 0,

G(o+) - 0,

L II I II I I
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0< E[S ] <=,

P{S < t} - 1 e 0 < a < t > 0.

Thus, the arrival times form a Poisson process. Q1 has a general

server. Q2 has an exponential server. Any sample path w e a determines

four sequences of random variables; {An (w)}, the interarrival times;

{s(l)()} , the service times at Q1; (S (2) }, the service times at Q
(S 1w} th se2c;tmsa

and {Yn (w)}, the states of the decomposition switch. Yk will be

allowed to depend on {An}, {S(1}P {S(2)}, and {Y } in a limitedn n n n

fashion. We will describe the probabilistic structure of Y in sectionn

three.

3. Processes of Interest

We begin section three with a brief introduction to point proces-

ses. Most of the following is taken from Daley and Vere-Jones (1972).

Let X be any complete separable a-compact metric space. Let dlbe the

space of all non-negative integer-valued measures Y(-) defined on the

a-algebra 6u(X) of all Borel sets of the state space X, with N(A) <

for all bounded A c X). Let 9 be the a-algebra of subsets of

generated by all sets of the form [N: N(A) < k}, (k c {0,1,2,...),

A c £x)).

Definition 3.1. A general (stochastic) point process is a

measurable mapping from a probability space (Q, J,P) into ( A, 9).
Definition 3.2. A point process is a general point process with

state space X -+ = (0,ac]

Definition 3.3. A general point process with state space

X - Y x 14.is called a marked point process and Y is referred to as the

mark space.
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Marked point processes are sometimes called labelled point

processes or point processes with an ancillary variable. At time 0,

i1 customers are in Q1 and i2 customers are in Q2' Six point processes

will be used to represent the flows of customers in the system.

Na will be the point process representing the arrival process.

Na is a measurable mapping from (1, e,P) into (K4+, R(R+)). For
t+ +

any w E n , N (w) is the number of arrivals in the interval (O,t], i.e.
t

a - Na(Ot]. Similarly, Ni will represent the input process to QV No0

will represent the output process from Q1, Nd will represent the

departure process from the system, Nf will represent the feedback process

to Q2' and Nr will represent the reentry process from Q2 to QI. These

six point processes are determined by the initial conditions and the

governing sequences. It is easy to see that

N a + Nr and N
0 =Nd f

t t r t t t"

From Na we can determine T, the time of the nth arrival. Let Ta - {.,}.t n

i 0 d f r
Similarly we can determine T , T , T , T , and T

In the following theorem we construct the point processes re-

presenting the customer flows and show that the point processes are

measurable functions defined on (a,Jr,P).
a Ni 0 Nd f r  a and

Theorem 3.4. Nt , t N , Nt T T, T , T , Tf  Tn

are measurable functions from (Q, j,P) into (]R+, ( R+)).

Proof by induction. Initially there are i1 customers in Q1 and

i2 customers in Q2 " Define

T TO  TO " T 0a T d T f T r 0,
0 0 0  T 0 mT 0 T 0 - r0

0Ta - 0T - 0Tn o 0T - 0 T f T - 0,n n n n n n

0 a 0i o 0Nd 0 f 0Nr 0.
t t t t t t
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We will construct a sequence of measurable functions iTa + T as i + a.n n
i 0 d f r

Similarly for Tn , Tn Tn, T , and n there will be a sequence of

measurable functions converging pointwise to each of the functions. Let

T denote the time of the nth event. An event consists of a change inn

either one or both queue lengths. Thus an event corresponds to either

an input or an output. Let Z(T0) - (il,i2). Z(Tn) will denote the

queue length just after time Tn, the time of the nth event. Our proof

is by induction. We assue that Tk, kTi, j, k, k , kTf, ,

kNi kNo kNd kNf Z(Tk) are measurable for all k < n. Then we
t' t~ t' t' t ar

n+1 a n+lTi n+1 o n+l T d n+l f n+l r nlNa n+ Yshwta n+1, tj -- ,tj , , T, "t

n+'No, n+lNd .. n+.t, n+l r and Z(T 1 ) are measurable. We will
t t t tn+l

sometimes write nNa(t) for nN, and similarly for the other counting
t

processes. Now T n+ can be expressed as

Tn+l 1 (0, ) x (0,) (Z(T n)){min CnTa +A
n (nn )Na(Tn ) n ) +1

I (Z(nT, )).( nT"o +S(1)
(0,w)x [0,) nNo(Tn) nN 0 (T nNo(T n ) + 1

" Z o Mn Ti +(1)+ I (Z( Tor ))(nTr +S ),{OxOo) XN(Tn) nNi(nT° ) + 1 N° (T n ) +l

([0,-)x (0,-)( n~r(T n )) ( nNr (T n)+ Nr(T n)+ 1))(nTf +S ( 2 )

[O,) x {o( nNr (T) nNf(nTNr ) nNr(T )+l
n nNr (T n

[n~a

+ I{} x ( (Z(Tn)){min[nTa(n) + Aa()+

(Z(nTr ))(,Tr +S(2) ) +
,x( Nr(T) r(T ) Nr(Tn )+

Tn n(n
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(Z(IT nTf +S(2)
[0,-) X {0 n r(T) nNf(nTr )+1 nNr(T) +1

Nr (T )

+ I (0,) X {o}(Z(T n)){min[nTa +A
nNa(Tn) n Na(T n ) + 1

I(0,-1 x [O,-)(Z(nTo ))(,to + S (1)
N0 (T) N°(T ) nNo(Tn ) +1

I( nT0 )n i +a n

{0} x ( ,- n~ (TnN ( T n) + 1 n N° (T )  + 1

11 n No0(T n)

+ I{0} x {0}(Z(T n))[n a +A
Oxn nNa(T) nNa(Tn)+ 1

A little explanation of the previous equation is due. The equation is

divided into four terms depending on the queue length at time T n . In

the first term the queue length at both queues is strictly positive,

hence there is a customer in service at both queues. Consequently, the

time of the next event is the minimum of three random variables: the

time until the next arrival, the time until the next output, and the

time until the next reentry. The time of the sext arrival is the time

of the last arrival plus the next interarrival time. The time until the

next output must be broken into two cases. In the first case, the queue

length at Q1 at the time of the last output was greater than zero. Hence

the time of the next output is the time of the last output plus the next

service time. In the second case at the time of the last output, Q1

became idle. Hence the time until the next output is the time until the

first input after it became idle plus the next service time. Note that

an input must have occurred by time Tn since Q1 has a positive queue

length at time T . The time until the next reentry is also divided into
na

two cases analogously to the time until the next output except that we
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condition on whether is busy or idle at the time of the last reentry.

Now T is measurable since T is a combination of sums, products,
n+l n+l

mins and compositions of functions which are measurable either by the

inductive hypothesis or by being a member of one of the governing

sequences. We have implicitly assumed chat nTa is the time of the
nNa(Tn)n

last arrival in (0, Tn ) and similarly for nTo , etc.. This will
nN°(T n)

follow from the following recursive definition of nTa and nNa. First

note that Tn+1 > T a.s., since in every case the time until the next

event is the sum of some past time plus an independent random variable,

which is exponentially distributed in all cases except when the random

variable is S We know that an event has occurred. Now we need to
n

decide whether it was an arrival, departure, feedback, or reentry.

Tn+i has the following form

Tn I (,) O (Z(Tn)){minfa fo' fr]1
Tnlm1(0, -) x(0, -) ((Tn Mmnfa o 0 r

+ I{01 x (0, ) (Z(Tn)){min[fa' f r 1

+ 1(O,) x {o} (Z(Tn)){min[fa, fo }

+ I{0 x {o}Z(T n))fa

Define

n+lT a nTa+I (nNa(T
"k k (k-l an

(I (Z(T ))I (f-f )I (f-f)
(0. ) x (0,) n (0,-) o a (0,M) r a

+ 1{0} x (0,-) (Z(T n))I(o,-) (fr-fa) +

(0x07 0~
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(0-)x 0)(Z (T n( 0,)f -f)a

+ 0 ~ Ox (0) (Z (T n))IT n~

fl+l Td nTd +I (nNd(T)
k k (k-1) n

(0-) [0I (Z(T U))I(0- (f -f)0gI0- (f -f0)

.I(0,c)x (0,-) (TnM (o,-) (fa o )1(0,-) (fr 0)

+ I ,-)( 0 (Z(T)n)I(, (f a-f 0)IT L-

n Tf Tf +1I (Nf(T.))
k k {k-l1) 1

* [I(Z())I (f-f )I (f-f
(0,-)Z( x ))I)n (0,-) a- 0 (0,-) r- 0

1(, -) x (0 nO' --

n~ t n+r (N'(T)
k k fk-i) n

(0,-)x (0,-) (Z(T n))I (o,-) (fa ro) (0,-) (f 0-f

+ I(oW)x{O}-(ZT n))I(o,m) (fa-fr)IYn

n+ i n ''(
kc k (k-li n

[(0, -) x (0,as) ((Tn 1(0 -) fa -r ( , aw r-

+ I (Z (T + f- ]
{O x (0,-) n (0)arnl
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+ (0,,) x {0}(Z(T n (0,-) (fo-fa)

+ I{0} x 0} (Z(Tn))Tn+l"

Thus Tis the time of the kth arrival if it is one of the first n+l
events. Otherwise, n+l a

Tk a 0. The same observation is true about

n+li n+lo n+1 d n+lTf n+l rTk' TkP k. k' and Tk. Now define

n+lNa(t) _ Tk), a n i n+1 iD (0,t ]  ai), n (t) - I(0,t ] ( Ti),

k k

+ nNd(t) i(0, (n+l Tk),
'+N°(t) " I~~] T - I'

n+Nft . I n+1 Tf n+ r M- +l Tr).
n+ ~ E = (0,t ] ( k, (t)= (0t ] ( 1k.

k

Thus, n+'Na(t) is the number of arrivals in the interval (O,t] which are

also one of the first n+l events. The same holds for the other counting

processes. Now,

Z (Tn+ ) - (i1+n+ i (Tn+l) -n+ o(Tn+l) ' 12+n+Nf (T n+l) _ n+ r(Tn+l)),

and we have completed the induction. Each of the functions defined

above are measurable since we have expressed them as sums, products or

compositions of measurable functions. Now as n

n]a +Ta nTi+ Ti To +To
k k'l k k' k k'

nTd + Td n f f r +Tr
k' Tk k' k k'

nNa ta a, 'Ni Ni nNo+NO
t t' t t t'

n dNd Nf Nf r +NrN C' tC t ' Ct t t'

Our proof is completed since if (f ) are measurable and fn f
.

nn

then f is measurable. 0

LetlN - {0,1,2,...), F -IN x V and (F, 1) be the discrete
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topological space. The stochastic process Z {Zt: t > 0) will be the
t

joint queue length process, where

Z0 (W) - (i 1 , 2)

and

Z - i1 + -i + N(w), + t > 0.
t 2 t

If Zt W (Jl' J2) then at time t, Q, has Jl customers and Q2 has J2

customers: Zt is a measurable function from (,tF) to (F, ), and is

a right continuous function of t having left hand limits a.e..

We now characterize the probabilistic structure of {Yn }, the

decomposition switch. We assume that

N{Yn+ k I Z ; t < Tn+0

" P{Y " kI ZTo (jig j2) SP
n+l 2'n+n+l

hk(Ji' j2
' x) k 0, 1,

0 otherwise.

0

Note that YI...Yn is determined by {Z t < T n+i

Bernoulli feedback is a special case in which

P pif k - 1,

hk(jl' J2' x)

1-p if k -0.

With Bernoulli feedback {Y n} is a i.i.d. sequence of Bernoulli random

variables and independent of the other governing sequences.

In much of our analysis, we will be examining the system at out-

put points. Hence, X° will represent the state of the system at time
n

T0 . Let E -N xN 1x {0,1), (E,t? ) be the discrete topological space,
n

0 = (Z0, 0) and X
O - (ZTO - Cl, 0) Yn) Thus X is an ordered triple
n -)' " nn
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and if X - (i, i, i3) then just after the nth output from QI £

customers are in QI, i2 customers are in Q2 (excluding the nth output

should it feedback) and i3 is 0 or 1 depending on whether the nth output

departs or feeds back, respectively. Let X°  (X }. (X° , TO) will

denote {(Xn, T° )l where X is the state at the nth output and T is then n

time of the nth output.



CHAPTER III

ANALYSIS

In Chapter III we study the processes of interest as defined in

section three of Chapter II. Section one analyzes (X° , TO), the system

embedded at outputs. We show that (X° , TO) is a Markov renewal process

on a countable state space. This allows us, in section two, to analyze

Z, the time dependent queue length process, as a semi-regenerative

process. Section three analyzes the busy cycle of the system. Section

four contains the analysis of the point processes representing the flows

in the network.

1. The System at Output Points

Recall that T n is the time of the nth output from Q., and if

x 0 1 ' i3 ),then at time T0-, i1 + 1 customers are in Q1 , i2

customers are in Q2' and i3 is 0 or 1 depending on whether the nth

output departs or feeds back, respectively. Our first theorem charac-

terizes the structure of (X
°, T)

Theorem 11. (Xo, TO) is a Harkov renewal process with state

space E - IN x IN x {0, 1}.

Proof. We need to show that

P{X 0  -(,j,),To -To t X0,...,X 0 ; T09 ...,T 
0 }h+l Jl '3) n+l n - o n o n

SP{X (JjJ) T - T 0 < t I X0 - (Ii'1
293 n+l I I - n 2  3

21
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for all (JJ2,J3 C E, (il,i2,i3) E, n c IN, and t > 0. Let

o T0  - T0. If i > 0, 0 -() If iM 0, then

n+1 n+l n On+l n+" =
0n M 1 - + I. If i2 + i3 - 0, I is an exponential random variable
O+1 " n+l2 3

with parameter X. If i2 + i3 > 0, I is an exponential random variable

with parameter (a + X). Now the number of arrivals to Q, and number of
departures from Q2 depend only on Xk and On+ . Since Y depends only

departures depends only

on JlJ 2 , and Sn+l(1) (1° , TO) has the desired property. 0

Let Q denote the semi-Markov kernel over E, that is

Q t) P{xl j T, T -Tn < t I -n i}

where i (il,i 2 ,1 3 ), j - (JlJ 2 ,j 3 ), and i, j c E.

Lemma 1.2
/t

h 0 1 j 2 ,x)M (i 2 -J 2 , x)M(J 1 -i++J 2 -i 2 , x)G(dx)

if I > 0, _3  O, J1 - il + 1 > '2  J2 > 0,

jte) %mj(t-s)ds, m - (1, 0, 0),

if i1 -0, i2 - 0, 13 =0 J1 > 0, J2 0,

ft EQij(t) - (X + a)e- (  L+ a)s ( (t-s) ds,

Qi +Qj (t- s) + X Qnj ' s.

m -(I, 1 2, 0), n - (1, 12 - 1it 0),

if iI  0 0, i2 O i3 O,

Q m(t), m - (i1 , 12+1, 0),

if 13 " i,

0 otherwise,
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e-l X)J/ <k
* ()i J <k,

where (j,x) = =(ux)/i - k,

0 otherwise.

Proof.

0 0 (1) cCase 1. i 1 >0, i 3 - 0. Since i 1 > 0, T°+l -TO n() hence

it has distribution G(x). i2 - J2 customers must leave Q2 "

H 2 (i2 - J2,x) is the probability of this event occurring in time x.

j 1-i1 
+ 1 customers must enter QI. Since i2 - J2 come from Q2"

jl-i 1 +l+J 2 -i 2 must arrive from the outside. M"(Jl-il+l+J 2 -i 2, x)

is the probability of this event occurring in time x. Clearly

jl-i 1 +l > i 2 -J 2 > 0.

Case 2. iI - i - i - 0. Since the system is empty, the system

waits an exponentially distributed length of time, s, for an arrival.

The probability of now transferring from (1, 0, 0) to j in time t- s is

given in case 1.

Case 3. il 0  i 2 • 0, i 3  0. Since i, M 0 the system waits

for an exponential length of time, s, until either an arrival occurs or

a customer departs Q2" An arrival occurs first with probability X/(X+a)

and then the probability of transferring from (1, i2, 0) to j is given in

case 1. Similarly an output from Q2 occurs first with probability

a/(1+ri) and then the probability of transferring from (1, i2 - 1, 0) to j

is given in case 1.

Case 4. i3 - 1. The probability of transferring from (il, 12, 1)

to j is the same as the probability of transferring from (iI , i2+i, 0)

to J.
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Hereafter, we denote P{AIX 0 = i} as PW{A}. Let

Qn(., J, t) _ p {X- J, To < t}

and

R(t)= Q n(t)

where Qn(t) is the matrix with Qn(i,j,t) as its i, Jth element, and a(t)

is the Markov renewal kernel with elements R(i,j,t).

Q(-) limr Q(t)
t-)4

is the one step transition matrix for the Markov chain X° (see Cinlar

(1975; p. 314)).

Criterion 1.3. (X°, TO) is an irreducible Markov renewal process

with state space E if and only if

0 f ho(j 1 9 J2' x) G(dx) < 1, jl' J2 E (1)

Proof. If f h0 (j 1 , J2' x) G(dx) - 0 then the state (ji, J2 ' 0)

is not reachable. Similarly, (J1l J2' 1) is not reachable iff ho(jl ' J2' x) G(dx) -1. If () holds, then there is a positive

probability of transferring to (11+1, i2, 0), (i1-1, i2, 0), (il, 12-1, 0)

or (i 1 , i 2 , 1) from (il, i 2 , 0) in one step. Similarly there is a

positive probability of transferring to (il, i2+, 0) or (iI, i2, 0) from

(il, i2, 1). By using a finite number of these steps, there is a positive

probability of reaching any state from any other state. C)

Theorem 1.4. (Xo , TO) is aperiodic.

Proof. First, some state (0,.,.) is reachable, since in any

state (i,,), i1 > 0, there is a positive probability of entering some

state U
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Hence, we need only show that the distribution of the time

between returns to (0, 12, i3) is aperiodic. But this follows since

the inter-return time is composed of a random number of service times

and at least one idle time. The idle time is exponentially distributed,

hence the inter-return time cannot be arithmetic with a fixed span S.

Let L be the lifetime of (X°, TO). That is,

L - sup Tn

The following lemma shows that L is almost surely infinite.

Lemma 1.7.

L =sup T =,a.s..
n n

Proof. Since

T0 > 1) (1) s
n-i n1

we have

L > s~l ) + s I) .. +s~l ) .
1 n

By the strong law of large numbers

in - E[S1
) I a.s..

nI

Hence - a.s., implying L -, a.s..

In the remaining chapters, we will make use of our results about

(X°, T°) in order to analyze other processes of interest.

2. The Time Dependent Queue Length Process

Z was defined in 11.3 to be the joint queue length process. If

Zt -(i 1, 1i2), then at time t, Q contains i11 customers and Q2 cont'nls
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£2 customers. We use the results about (X°, T°) from section one to

characterize Z as a semi-regenerative process (cf. ginlar (1975) p. 343)

and to determine the time dependent queue length process.

Le-ma 2.1. (T01 are stopping times for Z.
n

Proof. Let T 0. Now

0

T°  inf {t: Z - Z (
n t>T0 _l

n-i

Let B c A(Zt; 0 < t < T 0 ). Clearly
t - n

Bf T0  < t) C (Z; s t). 0
n+1 - -

Lemma 2.2. Given i then for all j we have

Ei[f(ZTn + l ,... n + t ) [ A Z u < T 0)]

flO 1 TO +m

- E (f(Z ,...,Z )I on (X0 = j}.
j tl1 t Mnm

Proof. By the Markov property of inter-arrival times and service

times at Q2, t(Zu; u < T 0 ) and j?(Zu; u > TO) are conditionall- inde-

pendent given Xn, since T is a point of service completion at QI.
n

Now we are in a position to characterize the structure of the

queue length process, Z. Recall that F - I x 14.

Theorem 2.3. Z is a semi-regenerative process with state space

F.

Proof. From 11.3, we know that Z - {Zt > 0} is a stochastic

process with the discrete topological space (F,!) as its state space,

that Zt is a right continuous function of t having left hand limits

a.e.. From section one, we know that (X0, T0) is a Markov renewal

process with an infinite lifetime. Clearly, {Xn - i} £ AZu; u < Tn).

This combined with le-mmas 2.1 and 2.2 shows that Z is a semi-regenerative

process. 0
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Lemma 2.4. Define K t(i, j) - P {Zt -J, I~ > 0}, where

±-(iv 1, 2' £3) E and j -(j 1, JI) £ F. Then K t (i, j) is

1 2 +1

if 1. > 0

e-(Xa)t

if i - (0, £ 2)9 i3) j -(0, 1 2 + ±3) 2 i+ 13> 0,

e

if ± - (0, 0, 0), j-(0, 0) ,

e -Xs [1 F(t - ) ex (t S) x (t - 1) ds,

J .~~ F( 1-) !

7M (1, 2) if i -(0, 0,s), j - (j 2'2'- 0),> 0

+ x M2 3-(1 - -)] -a

H2 X(±~ 2±± 3 -j 2  t - s )l~ 1 + 2 d 2s 3 ,ts

if i -(01 2 ~) j - 0j1 9 J2 1 12 +3 > 0,

where Uk jX) 2] GeXIx)i/il j - k,

i-k

0 otherwise.

K t(i, j) describes the behavior of Z between semi-regeneration

points (i.e. output points).
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Proof. Since

Pi{Zt M l' 2)' To > ti - P {T0 > t}P{Z - ( j T J tI ,
ii i2 1t 1il 2 1

we first determine the distribution of To. Then conditioned on T1 > t,

the event Zt - (Jll J2) will be realized if the number of people in Q2

decreases from i2 +i3 to and the number of people in Q increases

from 1 to j 0.

Let P (i, A) - e A). By combining the results of section
t Pi t

one with Theorem 2.3 and Leuna 2.4, we are able to obtain the time

dependent solution to the queue length process.

Theorem 2.5. For any i (il, i2, i3 ) c E and j - (jE, J2) £ F,

t
Pt(i, j) - R(i, k, ds)Kt 5 s (k, j).

keE JO

Proof. Since Z is a semi-regenerative process with an embedded

Markov renewal process (X, TO), the theorem follows directly from

Theorem 10.6.8 of ginlar (1975; p. 346). 0

To complete the analysis of the queue length process, we will

examine the limiting distribution of Zt as t * . First, let v be an

invariant measure for the Markov chain X0 and m(j) = Ei[To] < ".

Theorem 2.6. If (X° , TO) is an irreducible aperiodic recurrent

process and vm < -, then

lim P t (i, A) - dt.
j JJ

Remark: In section one, we analyzed conditions for (X°, TO) to

be irreducible and aperiodic.

Proof. The result follows directly from Theorem 10.6.12 and from

the proof of Theorem 10.7.5 case (b) of inlar (1975; p. 347, p. 351). 0
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Recall that h0 (j 1 , j2' x) is the probability of a customer

departing given that his service time was x and that he will leave

behind J, customers in Q, and J2 customers in Q2 " When

h0 (j 1 ' ' ) ho(j 1 , j 2)

we can obtain some easily computed sufficient conditions for vm <

Let 1/U denote the expected service time of a customer. Since

i/U < mi < i/V + i/A for all i, vm < - if Zvi < W. If X
° is an

irreducible aperiodic Markov chain this is equivalent to showing that k°

is ergodic.

Theorem 2.7. X° is ergodic if X° is an irreducible aperiodic

process and if for all but finitely many (jlj 2)

ho(Jl Jl2)2<

and

x(hl(JlJ 2) + X/U)

a(ho(Jlj 2 ) - X/la) < .*

Remark: In the M/M/l queue with delayed Bernoulli feedback with

ho(j0,J2) - q, the sufficient conditions become

A < I and A(p + A/V) < 1.
1zq G(q- XU)

These conditions are slightly more conservative than the necessary and

sufficient conditions in Jackson (1957) which are

A < 1 and P < 1.
liq ,aq
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Proof. We use one of Foster's criteria (cf. Cohen (1969) p. 25)

for the ergodicity of a Markov chain. The condition is that we find

scme nonnegative function f such that

I E[f(x 0 +1 ) I X I

and for all but finitely many states X0

E~f(X0o) f(X) 0 i] < 0.

Since x - (ilp i2  i3), let

f(Xn) - f(il, i2, i3) -i+i 2 + i 3 .

Thus f(X° ) is the total number in the system. Now,
n

- h0(jlj 2) if i1 > 0,
2 1

if i I as 0 and 1i2 > 0.

Hence if

- hO(jij 2 ) c 0

and

A (1 +- - ho(j 1 ,j 2 )) + -j (1 " ho(j 1 'j 2 )) • 0,

and aince IE(f(x . 1) x10 ' Xn is ergodic. The above simplify to the

stated conditions. 0
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An example of an application of Theorem 2.7 is the M/Gil queue

with delayed feedback in which

h il J2
h (J1  J2' x) " h 1(j, j 2 ) w Pl P2 , 0 < P1 ' p2 < .

Using Theorem 2.7, a sufficient condition for ergodicity is that

< 1 and < 1< Ql - ") 1

where p - X/U. This can be shown since there exists J such that for all

(Jl' J2) with Jl + J2 > J

A_< , X2 )__ < 1

ih (ji 2) i[l - max(PlP 2)J

and

and + /Oi) (max(Plp 2 ) J + A/a) 1.

a(ho(jlj2) - A/5) a(l - max(PlP 2 )
J - X/u)

It is interesting to note that the sufficient conditions do not depend

on the specific values of p1 and P2. In fact the result does not even

depend on the geometric form of hl(jlj 2). The only necessary property

is that for each e > 0, there exists a finite number of states (Jlj 2)

such that h1 (JlJ 2) > 1 - e.

By analogy to Jackson networks and M/G/l queues, one might guess

that a necessary and sufficient condition for ergodicity is that

Sand (Jl'J2)<1
ho(JlJ2) <ho(J 1 1J2)

for all but a finite number of states. In the previous example this

would reduce to A/U < 1. Thus an interesting question is whether there

exists a system with X/u < 1, for each c > 0, has only a finite

number of states with hl(J1 ,J2) > 1-c, and that fails to be ergodic.
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3. The Busy Cycle

A busy cycle is comprised of an idle period followed by a busy

period. During the idle period both Q and Q2 are idle. During the

busy period at least one of the two queues has a customer in service.

The busy period is the sum of i + j independent random variables, i

service times at Q1 with distribution G and j idle times at Q2 which

are exponentially distributed with parameter X + a. We will be able to

0 0examine the busy cycle by filtering the (X , T ) process analyzed in

section one. Let D - {(0, 0, 0)) and E -IN xli x {0, 11. Assume

X- (0, 0, 0) and N O. Let

N inf{i I c D, i > Nn 1 , n c l4 - {0}.

Now, we define

X 7 andT To ncI.

Theorem 3.1. (X, T) is a Markov renewal process.

Proof. The result follows from Theorem 10.1.13 of Cinlar (1975).O

In general, the busy cycle of a queueing network is not neces-

sarily a renewal process. For this network, however, we have the

following:

Corollary 3.2. T - {Ti; i £ IN) is a renewal proceas.

Proof. (X, T) is a Markov renewal process whose state space has

. only one point. By Theorem 10.1.11 of ginlar (1975), T is a renewal

process. O

Since T is a renewal process, we need only obtain the distribu-

tion of an arbitrary interval to characterize the process. First, we

partition the semi-Markov kernel of (X, T). Let D' - E - D and
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D D'

D [QDD QDD'1
j I

D' CD'D QD'DJ

Theorem 3.3. The distribution of the busy cycle is given by

QDD + QDD' * '"Q;D'D' ) * QD'D

where * denotes convolution (cf. inlar (1975)(10.3.1) p. 323).

Proof. Follows directly from theorem 8.15 of ginlar (1969).

We could analyze Zt, the joint queue length process, as a

regenerative process with T as the set of regeneration points. However,

it is easier to describe the behavior of Zt between output points (as

done in section two) than between departure points leaving an empty

system.

4. Customer Flows

In section four, we analyze the flow of customers on the arcs of

the network. The flow on each arc will be represented as either a point

process or as a marked point process. (See Definitions 11.3.1 through

11.3.4 for these concepts). Recall from section 111.3 that;

Na is the arrival process,

Ni Is the input process,
N is the output process,

Nd is the departure process,

Nf is the feedback process,

rN is the reentry process.

Equivalently, we have

1a-
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Ta is time of the nth arrival,n

Ti is time of the nth input,n

T is time of the ath output,

nd
Tis time of the nth departure,

Tf is time of the nth feedback,
n

Tr is time of the nth reentry.
n

First, we examine the customer flows as marked point processes.

A marked point process (sometimes called a labelled point process or a

point process with an ancillary variable) can be thought of as a point

process in which each point Tn has an associated random variable Xn

lying in the mark space. Marked point processes are useful in represent-

ing an arrival process to a queue with several types of customers. The

basic point T would be the time of the nth arrival and the associatedn

random variable Xn would be the type of the customer. Clearly the process

(k, To) analyzed in section one is a marked point process. Our first

result is a restatement of Theorem 1.1 and characterizes (X°, TO), the

marked output process.

Theorem 4.1. The marked point process (X° , TO) is a Markov

renewal process.

Now define

xd Z - (1, 0), xd d

ZT - ( , 0), x .

We can now characterize the marked departure process (X , T ) and the

f fmarked feedback process (X , Tf).

Theorem 4.2. The marked point process (X , T ) is a arkov



35

renewal process with state space N x IN.

Proof. Let D - {(i1, 12, 0) (ilpi 2,0) c El. (Xd, Td) can be

obtained by filtering (X° , TO) with D (i.e. at departure points). By

Theorem 10.1.13 of inlar (1975; p. 315), (Xd, Td) is a Markov renewal

process with state space IN x I x {0}. Clearly we can allow 2N x IN to

be the state space. 0

Theorem 4.3. The marked point process (Xf , Tf) is a Markov

renewal process with state space NM x IN.

Proof. The proof is the same as the proof of Theorem 4.2 except

that D - {(il, i2, 1)1 (i I , i 2 , 1) c El. 0

The semi-Markov kernels for (X f , Tf) and (X d , T d) can be obtained

from the semi-Markov kernel of (X° , TO). Thus, we can always character-

ize (X°, TO), the marked output process; (Xd, Td), the marked departure

process; and (Xf , Tf), the marked feedback process, as Markov renewal

processes with a countable state space. The result does not follow for

the marked input process, (X i , Ti); the marked reentry process, (Xr , T r )

or the marked arrival process, (Xa, Ta). For example, let Q1 have a

deterministic server. Xi Xr , and Xa will not have the Markov property

at inputs, reentries, or arrivals unless the state space has the forward

or backward service time of the customer in service at QI" But this

requires an uncountable state space.

Queueing networks are often analyzed by decomposing the network

and analyzing each component separately. The arrival process to each

component is assumed to be a renewal process or a Poisson process. Since

the arrival process to a component may be the departure process from some

other component, the arrival process may not be a Poisson or even a

renewal process. It would be useful to know conditions for the customer
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flow to be weakly lumpable to Poisson or renewal processes.

The term weakly lumpable has been used by Kemeny and Snell (1960)

in connection with Harkov chains. Serfozo (1969) defined weak lumpab-

ility analogously for Markov renewal processes. Simon (1978) has done

further research in analyzing equivalances between Markov renewal

processes. Our definition of weak lumpability relates marked point

processes with renewal processes.

Definition 4.4. A marked point process (X, T) is weakly lump-

able to a renewal process iff T is a renewal process. If in addition

T is a Poisson point process, then (X, T) is weakly lumpable to a Poisson

point process.

For example, the departure process from an M/M/l queue can be

modelled as a Markov renewal process (X, T) where T is the time of then

nth output and X is the number in the system at time T (see Disneyn n

et al. (1972)). It is well known that if the distribution of X0 is

the equilibrium distribution of an M/M/l queue, then T is a Poisson

point process. Thus in equilibrium, (X, T) is weakly lumpable to a

Poisson point process.

For a Markov renewal point process (X, T), the conditions for T

to be a renewal process can be expressed in terms of v, the distribution

of X0, and Q, the semi-Narkov kernel of (X, T). Note that a Markov

renewal process (X, T) may be weakly lumpable for some values of v and

not for others.

Proposition 4.5. (X, T) is weakly lumpable to a renewal process

iff for all n, tl*t2,...,t n
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VQ(t)Q(t 2 ... Q(tn)u Q(tl)UVQ(t2)u.-.vQ(tn)u (2)

where u is a column vector of ones and the row vector v is the distribu-

tion of X0.

Proof. Since To I T 1 < -.. , T is a renewal process iff

T1 - TO, T2 - TI,.-*,Tn - Tn_1 , are i.i.d. random variables. That is

for all n

n
P {T1 - TO S ti...,T - T t - n P {T - T < ti1.

vl - ' n n-l - tn i V1 0-_ i

But this is (2). f
Simon (1979) has proven two useful results on the weak lumpability

of an irreducible Markov renewal process to a renewal process. Assume

that the Markov chain X has a stationary probability distribution r.

First, the only renewal process which is a candidate has interrenewal

distribution Q(t)u. Second, if (X, T) is weakly lumpable to a renewal

process when X0 has distribution v, then (X, T) is also weakly lumpable

to the same renewal process when X0 has distribution v. In summary, if

(X, T) with initial distribution it is not weakly lumpable to the renewal

process with interrenewal distribution wQ(t)u, then (X, T) cannot be

lumped to any renewal process regardless of the distribution of X0.

The following result shows that under most conditions of interest

the only possible renewal departure process is a Poisson process with

rate A.

Theorem 4.6. Assume that Xd is an irreducible Markov chain with

a stationary probability distribution w and that Ztu - Z0 u (the differ-

ence between the total number of customers at time t and at time 0)

*
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converges in distribution to an almost surely finite random variable.

If (X d , Td) is weakly lumpable to a renewal process then (Xd ,T d) is

weakly lumpable to a Poisson process with rate X.

Proof. Assume that X d has distribution w, where w is the

invariant probability distribution for the Markov chain Xd. From

Simon's second result we know that if (Xd, Td) is not weakly lumpable

with distribution w, it is not weakly lumpable for any initial distribu-
d

tion. Recall that X0 - (Z0, 0). Now

Zu Zu Na d (3)

t 0 t - t

Berman (1978, Theorem 7.4.2) has shown that if the moments of the

interrenewal times characterize the interrenewal distribution of Na and
t

if the left hand side of (3) converges in distribution to an almost

d
surely finite random variable then a necessary condition for N to be a

0t

renewal process is that it have the same iaterrenewal distribution.

Since an exponential distribution is characterized by its moments we

conclude that the only possible renewal departure process is a Poisson

process. C

In the remainder of this section we will restrict our attention

to systems satisfying the hypothesis of Theorem 4.6. Hence determining

if the departure process is a renewal process is equivalent to determin-

ing if the departure process is a Poisson process.

Now we also restrict our attention to queues in which the

probability of a customer feeding back is independent of the customer's

sojourn time. That is,

h o(jlJ 2,x) - ho(jlJ 2 ).
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Define a new random variable V to be the remaining service time of the
t

customer in service at time t in Q1 " If QI is empty define Vt W 0.

Nov (Z, V) - {Zt V t} is a Markov process where Zt is the joint queue

length at time t. Let p be the invariant and initial probability mea-

sure for (Z, V).

Kelly (1976) has called a network quasi-reversible if (a) depar-

tures of group i customers, for i 1 1,2,...,I form independent Poisson

processes; and (b) the state of the network at time t is independent

of departures from the network up until time t. In our system we have

one type of a customer, i.e. I - 1. The state of the network at time t

is (Zt, Vt). Thus condition (b) requires (Zt, Vt) and {N ; s < t} to

be independent. Melamed (1979a) has introduced a weaker condition
d

called pointwise independence which requires (Zt, V ) and N to be
t

independent for all t.

Theorem 4.7. If Ntd is a Poisson process and (Zt, Vt) is inde-

pendent of the departure process up to and including time t (i.e. of

{Nd; s < t}) then Q must have an exponential server.

Remark: If the hypothesis of Theorem 4.7 is satisfied then the

network is said to be quasi-reversible (cf. Kelly (1976)). The

hypothesis also implies pointwise independence, though the converse is

not necessarily true. Melamed shows that in a countable state regular
d

* Markov process, pointwise independence implies that N is a Poisson
tt

process, which is reassuring even though not immediately applicable

unless the server at Q has a special structure (e.g. Erlangian).

Proof. The proof relies on an important result appearing in the

following chapter on general networks. Consider a non-anticipating

I III I II i I.
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Poisson arrival process (i.e. a Poisson arrival process in which the

time until the next arrival is independent of the current state of

the network); then the distribution of the state of the network imbedded

before arrivals is the same as the distribution of the state of the

network at an arbitrary point in time.

Thus in our network the stationary distribution of (Z, V)

imbedded just before arrivals is u, the invariant probability measure

for (Z, V). Now consider the behavior of the network in reverse time.

The departure process after a time reversal becomes the arrival process.

Our hypothesis implies that the time since the last departure before

time t is independent of (Zt, V t). But after a time reversal this is

the time until the next arrival after time t. Hence the departure

process becomes a non-anticipating Poisson arrival process after a

time reversal. Thus we conclude that the stationary distribution of

(Zt, Vt) imbedded just after departures (i.e. in reverse time just

before arrivals) is also U.

Now just after a departure, if V t > 0 then V - S(1) for some n
tt n

(i.e. Vt is an entire service time). At an arbitrary point in time,

(1)if V t > 0 then Vt is the forward recurrence time of S nI . Since they

have the same distribution, S ( ) must be exponentially distributed (cf.n

ginlar (1975) pp. 306-307).

In the hypothesis of Theorem 4.7 we require (Zt, Vt) to be

independent of {Na; s < t}. We think this is a reasonable hypothesis,

i.e. it holds in most, if not all, cases in which the M/G/I queue with

delayed feedback has Poisson departures. The reason follows from

Conjecture 4.9.
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Definition 4.8. The departure process is uniquely weakly lump-

able to a Poisson process if

d d d d -Xti
P{T t T < t I P iT < tl.,,,.r < t 7- r (l-eti1- l''''' n- n y -V n- n i-i

implies p - y, where p and y are initial distributions for (ZO , V0 ) and

u is the invariant probability distribution of (Z, V).

Intuitively, the definition says that if the network is not

initially in equilibrium then the departure process is not a Poisson

process.

The following conjecture would resolve the entire issue.

Conjecture 4.9. The M/G/Il queue with delayed feedback is unique-

ly weakly lumpable to a Poisson process.

There is evidence supporting Conjecture 4.9 but we have been

unable to prove it.

Proposition 4.10. Unique weak lumpability to a Poisson process

implies quasi-reversibility which in turn implies pointwise independence.

Proof. Assume that the system is uniquely weakly lumpable to a

Poisson process. Assume that (Zo, V0) has distribution p, hence Nd is a0 0 t

Poisson process. Thus at any time t > 0, (Zt) V t) has distribution P

independent of {Nd; 0 _< s < t}, for otherwise N - Nd would not have
s -- t+s

a Poisson distribution by unique weak lumpability. Hence the system

is quasi-reversible. As noted earlier quasi-reversibility implies

pointwise independence. 0

By looking at the contrapositive to Proposition 4.10 we obtain

the following result.



42

Corollary 4.11. If the system is not quasi-reversible and if in

equilibrium the departure process is a Poisson process then there are

two distinct (and hence an uncountable number of) initial distributions

, for (Z, V) yielding a Poisson departure process.

Proof. Let F denote the set of initial distribution for (Z, V)
"" d

such that N is a Poisson process. P e r. If the system is not quasi-
t

reversible then the system is not uniquely weakly lumpable. Hence there

exist y # p such that y e F. Alternatively if the system is not quasi-

reversible there exists t and B e t(N; s < t) such that

P(B) > 0,

P {(zt' Vt) c C1 B} # u(C). (4)

If (4) does not hold for some t and B then the system would be quasi-

reversible since (Zt, V ) and [N ; s < t} would be independent. Let
t _

P {(Z t , Vt ) E C1 B1 = y(C).

Then y £ F. Once we have two elements u, y £ r, then

py + (l-p)p z F,

for all p such that py + (1- p)u is a probability measure. py + (l-p)u

is certainly a probability measure for all p c [0, 1]. Thus we have an

uncountable number of elements in F. It is possible to generate more

elements. Take any y e r, t and B c 3'(Nd; s < t), with P(B) > 0. Let

Py{zt, V t) E CI} - n(C).

Then n £ F. And as before, any probability measure expressible as a
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linear combination of elements of r is also in r.

In Corollary 4.11, "if the system is not pointwise independent" I
could have replaced with "if the system is not quasi-reversible" and

the result would follow. Before concluding this section we will briefly

discuss the weak lumpability of the output process, (X° , TO), to a

renewal process.

Proposition 4.12. In the M/G/1 queue with delayed Bernoulli

0 0feedback if N° is a renewal process then N is a Poisson process with
t t

rate X/q.
o d i eea rcs

Proof. If Nt is a renewal process then Nis a renewal process
t t

since is obtained from N by selecting points with a fixed probabil-
t t

ity q. But N must be a Poisson process if it is a renewal process.o

Consequently N0 must be a Poisson process since no other renewal process

when subjected to Bernoulli filtering yields a Poisson process. Clearly

since N must have rate X, N0 must have rate X/q. o
t

Furthermore, if it could be established that the M/G/ queue with

delayed Bernoulli feedback is uniquely weakly lumpable to a Poisson

process then No is not a Poisson process since the network must be a
t

Jackson network (G M). From Melamed (1979b) it is known that the flow

on a non-exit arc in a Jackson network is not a Poisson process.



CHAPTER IV

RESULTS FOR GENERAL SYSTEMS

In Chapter IV we look at some results for more general systems

than the M/G/l queue with delayed feedback. The notation in Chapter IV

and the rest of the dissertation are distinct.

The term Markov process will be restricted to continuous time

stochastic processes and the term Markov chain will be restricted to

discrete time stochastic processes. We show that under certain condi-

tions a Markov process {X(t): t > 0} and an imbedded Markov chain

{X(Ta-): n > 01 have the same invariant probability distribution. The

sequence T a T2... forms a Poisson process with rate a, but is not

necessarily independent of the Markov process {X(t): t >01. Our

proof uses an external observer who periodically samples the state of
e e Th eun e e .as om

{X(t): t > 0} at times TI, T. The sequence , T ... also forms
a a an

a Poisson process with rate a but is independent of Ta T2 ... and

{X(t): t > 01. We first show that the Markov process {X(t): t > 0} and

the Markov chain {X(Tne): n > 0} have the same invariant probability

distribution. Next we show that the Markov chain {X(Te): n > 01 and

{X(Ta_): n > 01 have the same invariant probability distribution. Hence

{X(t): t > 01 and X(T-): an > 01 have the same invariant probability

distribution.

The last section of the chapter is devoted to applications of

44
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the above results to several areas of applied probability including

queueing network theory and stochastic control.

1. Assumptions and Notation

Let (0, ,P) be a probability space and (E, ) a complete

separable metric space where 0 is the a-algebra of Borel sets of E.

Let X- {X(t): t > 0} be a strong Markov process with an indecomposable

state space (E, o') over 0, F,P) with right continuous sample paths

having left hand limits a.e.. Furthermore assume that X has a temporally

homogeneous transition function P (xA), x c E, A c e , with an invari-t

ant probability measure P and that P {X(t-) 0 X(t)1 0 for all t.

We use P to denote the following operator induced by Pt(x,A) on

(E, ) measurable functions,

Ptf(x) = fPt(x,dy)f(y).

We use uf to denote the following linear functional induced by u on the

(E, 60) measurable function f(x),

Pf - fl(dx)f(x).

Since P is an invariant probability measure in the above notation,

uPtIA(x) - UIA = o(A), A c 6', t > 0,

where IAX) is the indicator function of the set A. We define one more

operator UO which is called the a-potential operator and defined to be

U'f(x) - f eattf(x)dt - e-at  f (xdy)f(y)dt. a > 0.

e e

The sequence of external observation times 0 - T T1 < ... is

a Poisson process with rate a and is independent of the Markov process
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{X(t): t > 01. Let

S - G((x(s); s < t), (Ne; s < t))

where N: is the counting process associated with the Poisson process

{Te: n > 0). Intuitively, the a-algebra tv contains all the informa-

tion of the Markov process {X(s): s > 0} and the Poisson process

{T: n _ I up to time t. Let

~ -aU

Similarly, IV can be interpreted as containing all the information up

to but not including time t. Also define

Wt o(X(s); s < t).

The c-algebra contains all the information in the process X up to

time t. Clearly,

and X is a Markov process adapted to either or

Let a < a < ... be a sequence of t stopping times.Let 0 -T 1 _ TI

Define Xa . X(Ta-), n < 0. We will show that under certain conditions
n n

{Xa: n > 0} is a Karkov chain with the same invariant distribution as 1n
ethe Markov process X. Our proof uses the Markov chain {X n > 01

where Xe - X(Te). As stated in the introduction we first show that Xn n

and {Xe: n > 01 have the same invariant probability distribution and
n -

then that {Xe: n > 0) and {X n > 0} have the same invariant prob-

ability distribution.
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2. {X(t): t > 0 } vs. {X e: n > 01
n

Proposition 2.1. (X: n > 0} is a Markov chain with single step
n

transition function

P(x,A) - aUaIA(x), x e E, A c £ .

Proof. For each n, Te is an S stopping time. Since X has then -

strong Markov property (X(T:): n > 1} forms a markov chain.

Now, Te - Te is exponentially distributed with parameter a and
n+l n

is independent of the Markov process X. Hence,

P(x,A) = f( ae-at Pt(x,A)dt

W f e tPI()dt

= cUIA(X).

The following theorem states that the Markov process X has invari-

ant probability measure p if and only if the Markov chain {Xe: n > 0} has
n

invariant probability measure V.

Theorem 2.2. PPtIA(x) = p(A) Ia Ia IU IA(x) = p(A), a > 0.

Proof. ( ?)

iUaIA(X)- f(dx) a f e-at fPt(x,dy)IA(Y)dt.

By Tonelli's theorem (Royden (1964), p. 234) the right hand side becomes
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S cae -at f(dx) Pt(xdy)IA(y)dt

- ae U(A)

- (A)

( ) Since uaOI IA(x) -(A),

Hf(dx)a e- a t fPt(xdY)IA(Y)dt 
=(A).

f" e-at f (dx) fPt(x,dy)IAY)dt -f e-tau(A)dt.

By the a.s. uniqueness of Laplace transforms (see Feller, Vol. II,

p. 433) combined with the right continuity of Pt(x,A)

f),(dx) fPt(c,dy)IA(Y)dt - uj(A).

Thus uP IA(x) - (A).

The previous theorem can be intuitively interpreted as stating

that in equilibrium the distribution seen by an external observer is the

same as the distribution at an arbitrary point in time.

Theorem 2.2 has been proven for countable state Markov processes

* by ;inlar (1975), Chapter 8, Theorem 5.21 and for standard Markov proces-

sea by Nagasawa and Sato (1963). A standard Markov process is required

to be quasi-left-continuous. That is, if {Tn } is an increasing sequence

of t stopping times with limit T, :hen X(T) - X(T) a.s,. It is easy

to construct a system which has an uncountable state space which is not

L4
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quasi-left-continuous. For example an M/D/i queue with X(t) - ( Vt),

where Q is the queue length at time t and Vt is the remaining service

time of the customer in service at time t, is a Markov process. The

state space is uncountable and

T inf{t: Vt - 1},

T inf{t: T> Tn_,V <- 4
U n- n-1 t-n

T * lim T,
n

is a sequence of stopping times with the lim X(T ) > X(T) a.s..
n n

3. (Xe : n > } s ( a : n > 01
n n

{Xa: n > 01 is a discrete time stochastic process imbedded in the
n

Markov process {X(t): % > 0}. We would like {Xa: n > 01 to be a Markov

chain. In general {Xa: n > 01 may not be a Markov chain. In the appen-

dix we construct an example in which {X: n > 01 is not a Markov chain,

The following criterion gives sufficient conditions for {Xa: n > 11 to
n

have the Markov property.

Criterion 3.1. If

P{X(Ta) e B I(X ; t a) {( a) B XTa)Ia.s.

forallBc then " p a c
A+ n~ n5 , .+ .n

Proof. Let the regular conditional distribution Pn(B x) be a

version of P {XCTa) c B I X(T:-) = x}, (Breiman (1968), p. 77).

Since T is a 't stopping timen 18t
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p{a A Xa x Xa

n+ 1  n f-I

fP{X(Ta' ) A X(Ta ~ (dV x)

n+1 A n l

Let us define V8 to be the forward recurrence time until the next
C

T a after time t. Thus,

ita -inf{Ta: Ta > t1-t
t n n

Theorem 3.2. If {Xe: n > 11 and {Xa: n> 1} are stationaryn n

Markov chains with indecomposable state spaces and if

e
then ui is an invariant probability measure for Xnif f p. is an invariant

probability measure for Xa.

nn

Trof Le mm and a e { n T T e { hr

1 i {T a, Telan

Ti T2 <

Equation (1) implies that Ta is a Poisson process. T e was defined to be

a Poisson process and is independent of Ta. Hence T is a Poisson

process with rate 2cu. Let X X(Tn) Note that X(T e_) aX(Tne) a.s..

L n n n
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I A(Xi )ITe(T i)

Ei im n e (A) (2)

1+ ITe(Ti)
iLI

and

F ~IA(Xi)ITa(Ti) () 3Ei -i n - u a (A), (3)

1 + I Ta(T i)
i-I

ea ewhere u and are the stationary distributions of Xa and Ke,

respectively. Equation (2) and (3) follow from the fact that a station-

ary Narkov chains with an indecomposable state space is ergodic. Hence

in both (2) and (3), the expression inside the brackets converges a.s.

to the unique stationary distribution (Breiman (1968), Theorem 7.16).

(2) and (3) are identical except that ITe(Ti) in (2) replaces ITa(Ti)

in (3). But the probability of a particular observation point being

either an arrival or an external observer conditioned on the previous

history is .5. That is,

1/2 if k = 0,1,

rP{I e (T ) - k I JT - Pe(I a (T) - k J cFTn-
PiT n n p T n - 0 otherwise.

Consequently, ue (A) - va(A) for all A c 9.

By Theorem 2.2 P - Ue. Thus we have under the conditions of

Theorem 3.2 that if any one of Xtt X and X has stationary distribution
t n n
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p then all three have stationary distribution U.

4. Applications of Results

Work Sampling. In work sampling an employee is observed at

random points in time. At each observation point, the particular task

being performed by the employee is noted. From these observations,

the proportion of time an employee devotes to each task is estimated.

Under the assumptions of Theorem 2.2, if the observation points form an

independent Poisson process, the estimate converges a.s. to the true

value. In other sampling schemes, even other renewal processes, it is

possible to obtain a biased result.

Poisson Arrivals to Queueing Networks. One important application

of Theorem 3.2 is to the distribution of the state of a queueing network

imbedded at arrival points. Let the queueing network be modelled as a

Markov process {X(t): t > 0) and Ta be the time of the nth arrival. If-- n

the arrival process is a Poisson process satisfying (1), then under the

assuuptions of Theorem 3.2., in equilibrium the distribution of the

state of the queueing network at an arbitrary point in time is the same

as the distribution imbedded just before arrivals. In order to apply

Theorem 3.2 it is not necessary that all the arrival processes be Pois-

son processes. If an arrival process of a certain type of customer, or

of customers to a certain queue form a Poisson process, we can imbed

before these arrivals. The other arrival processes need not even be

renewal processes. Theorem 3.2 is applicable to finite capacity systems

(e.g, M/Gil/N). In finite capacity systems it is necessary to imbed be-

fore each of the Poisson arrivals whether it is blocked or not. It
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should be pointed out that even very complex queueing networks can be

modelled as a Markov process satisfying the restrictions of section 2.

The state space E is required to be a complete separable metric space

which would allow R , infinite dimensional Euclidean space. Hence even

a queueing network with renewal exogenous arrivals and general multi-

server queues can be modelled as a Markov process.

The above result is a generalization of a well known result that

in equilibrim in an M/Gil queue the distribution of the queue length

seen by an arrival is the same as the distribution of the queue length

at an arbitrary point in time, (Cooper (1972) p. 154).

Stochastic Control. Let Ta be the nth time we observe the system
n

to be controlled and based on the observation reset some control para-

meter. For example consider an M/Gi1 queue which we are attempting to

control. Our Markov process might be Xt = (Qt' UtV St) where Qt is the

queue length at time t, Ut is the length of service accumulated by the

customer in service at time t and St is a parameter controlling the

speed of the server. Let Ta be an independent Poisson process. Definen

Xa - X(Tn-). Based on Xa we take some action on the system. Several
n n n

possibilities are removing or adding customers, changing the service

rate or turning the server on or off. We incur a cost for each obser-

vation and action taken. In addition there is a cost associated with

the length of time in each state. Our objective is to minimize ex-

pected cost per unit time. Based on Theorem 3.2 we need only solve for

the invariant distribution of Xa in order to determine our costs. Fromn

this it is possible to determine the optimal control strategy in order

to minimize expected cost per unit time.

o.
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Poisson Departure Processes from Queueing Networks. If a

departure process from a queueing network is a Poisson process, is the

stationary distribution imbedded just after departures the same as the

distribution at an arbitrary point in time? Theorem 3.2 appears to be

inapplicable since (1) is violated. That is the time until the next

departure is clearly dependent on the current state. Let Ta be the time
n

of the nth departure and

Va - t - sup{Ta: Ta < t},

Thus Va is the backward recurrence time to the last departure before

time t. Consider the reversed Markov process. The departure times are I
arrival times in reverse time. If

P{Va < x I (X(s); s >t)) - 1-ax (4)

then the time since the last departure is independent of the future.

Hence in reversed time (1) holds. If the reversed Markov process

satisfies the conditions of section 2 and {X(Ta+): n > 01 is a stationary

Markov process with an indecomposable state space then {X(t): t > 01 and

{X(Ta+): n > 0} have the same invariant probability distribution. It
n-

should be pointed out that (4) may be satisfied for judicious selections

of a Markov process modelling a system and not for others. For example

consider an M/M/l queue with X )  (Qtt At) and X (2) = (Qt9 B t) where
x t t

Qt is the queue length at time t, At is the amount of service accumu-

lated by the customer in service and B is the remaining service time of

the customer in service. The Markov process X (2) satisfies (4) but X t
t

does not. In X(1) the Markov chain imbedded after departures has
t
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ATa+ - 0 a~s.. Thus X does not have the property that the distribu-

n t
tion of the state of the network imbedded just after departures is the

same as the distribution at an arbitrary point in time, while X 2) does

have the property (in equilibrium).

I .



CHAPTER V

DISCUSSION

Davignon (1977) points out that in the queue with instantaneous

feedback, published research reports outside of the computing literature

are rare. The same is true only more so of the queue with delayed feed-

back. In the computing literature, the queue with delayed feedback is

a useful and frequent model of the behavior of a computer system. How-

ever there are few theoretical results beyond expected values. The

few results which are more general are usually special cases of results

on Jackson networks. This dissertation analyzes the M/G/1 queue in

order to provide results for practitioners modelling a system as an

M/G/Il queue with delayed feedback and also to gain insight into queueing

networks.

1. Summary

Chapter I informally described the topic of queues with feedback

and reviewed pertinent literature. Chapter 11 formally described the

M/G/l queue with delayed feedback in terms of the governing sequences of
S]

random variables. The governing sequences of random variables are the

interarrival times, the service times at the upper and at the lower

queue, and the probability of a customer feeding back. The probability

of a customer feeding back was allowed to depend on the past history to

a limited extent. In section 3 the processes of interest were defined.

The processes of interest are (generally complicated) functions of the

56
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governing sequences. The processes of interest are the flow processes:

arrivals, inputs, outputs, departures, feedbacks, and reen~tries; and

the queue length process in both continuous time and imbedded at out-

puts.

In Chapter III, we analyzed the processes of interest. Our first

result characterized (X° , TO), the system at output points, as a Markov

renewal process. This result provided the foundation for much of the

analysis. The subsequent lemma exhibited the semi-Markov kernel of

(X° , TO). With state dependent feedback, the possibility of a reducible

state space arises. A simple necessary and sufficient condition for the

irreducibility of (X° , TO) was determined. Irreducibility in turn

implied that (X° , TO) was aperiodic. Under the assumptions of the model

the lifetime L - sup T was almost surely infinite. The above conditions
n n

on VX0 , TO) could be easily determined from the governing sequences.

Ergodicity was more difficult to verify. In order to determine if X° was

ergodic it was necessary to determine if there existed a stationary

probability vector for the Markov chain X° . However an easily computed

sufficient condition was established using Foster's criteria. Thus it

is easy to determine whether (X° , TO) is an aperiodic irreducible

Markov renewal process with an infinite lifetime. In addition there is

an easily checked sufficient condition for ergodicity.

Z, the continuous time queue length process, was analyzed by

using results about (X0 , TO). Z was shown to be a semi-regenerative

process with semi-regeneration times T°.

In the next section, the busy cycle was shown to be a renewal

process and an expression was found for the distribution function of

the interrenewal times.
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Section 4 analyzed the flow processes on the arcs. In particular,

the output process, feedback process, and departure process were shown

to be Markov renewal processes. It was also shown that, under general

conditions, if the departure process was a renewal process then it must

be a Poisson process. A conjecture was stated which, if verified, would

in turn show that if the departure process was a Poisson process,Q

must have an exponential server. Thus the only H/G/l queue with delayed

Bernoulli feedback having renewal departures would be the M/M/l queue

with delayed Bernoulli feedback, which is a Jackson network. This would

in turn imply that the MIG/l queue with delayed Bernoulli feedback,

never has a renewal output process.

Chapter IV discussed some general results which were used in

Chapter III but are also useful in areas other than the queue with

delayed feedback. It was shown that if {T~ n is a sequence of stopping

times for a Markov process [X(t): t > 01 with invariant probability

measure Ua, and X(T n-) is a Markov chain, then Ua is an stationary

probability measure for X(T n-). This can be used to show that Poisson

arrivals to a queueing network see the same distribution as at an

arbitrary point in time.

2. Future Research

Several areas of further research come to mind as extensions of

the present work. Foremost is proving or disproving Conjecture 4.9 on

* unique weak lumpability. Verification of Conjecture 4.9 would charac-

terize all HI/i queues with delayed Bernoulli feedback having renewal

departure processes or renewal output processes.

Another interesting question is whether there exists a system

whic~h fails to be ergodic but has
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A h1 (jlj 2)
h1(J1,J2) < 1 and - < 1,h 109Y ah o(lJ 2 )

for all but a finite number of states. More substantial but along the

same lines would be determining necessary and sufficient conditions,

which are easily computable, for the system to be ergodic.

A third untouched area is the difficult but needed study of the

sojourn time in queues with delayed feedback. In computer models the

sojourn time, i.e. the departure time minus the arrival time of an

arbitrary customer, is often the process of interest. This distribution

is unknown even in the case of most Jackson (1957) networks (cf. Simon

and Foley (1979)). In particular the sojourn time distribution is

unknown even in the case of the M/M/l queue with delayed Bernoulli

feedback.

3. Closing Comments

Most of the work in this dissertation and in queueing network

theory in general involves structural results and characterizations of

processes. There is a need for accurate approximations and tight bounds

on the processes of interest to supplement the structural results. Even

more strongly, there is a need for computable accurate approximations

and bounds.
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APPENDIX

AN EXAMLE IN WHICH {X': n > 11 IS N014-MABZ.OVIN,

Let X -{X(t): t > 0) be a Markov process and {Tat n > 0) a

sequence of stopping times for X. We construct an example in which

{iS: a > 1) fails to be a Markov chain where Xa - X(Ta-). our state

space E is the closed interval [-l, 11. Let Zit Z2 0 Z 3,. be a

sequence of i.i.d. exponential random variables with parameter a.

- 0,

-I V.P. .5,

X(T a)W

-X(T, ) if Z i

and for T' < t < Ta
n n+l

X(Ta) - (t - T) if X(T) -l1,

)~t a

* ( X(T') + (t - Ta) if X(Ta) a -1.

A particular realiz.ation of X(t) appears in figure 4.

60
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+1

Fig. 4 -A Realization of X(t)

The points of discontinuity not on the zero axis form a Poisson

process. At a point of discontinuity t not on the zero axis, X(t*) - 1

If X(t*-) > 0 and X(t*) - -1 if X(t*-) c 0. At a point of discontinuity

t *on the axis (i.e. X(t*-) - 0), X(t*) -1 if X(t) approaches xero

from below at t. Similarly, X(t*) - -1 if X(t) approaches zero from

above at time t*

X - {X(t): t > 01 is a Markov process satisfying the assumptions

in the first paragraph of section 2 and {T a: n > 11 is a sequence of

stopping times for X. 7e;- -X(a). To show that Xa is not a Markovn n n

chain we need only note that

P{xa1 > 0 a -01 - .5(1 - e-0)

while

p(a >0  a X,-0. X

Note that Criterion 3.1 does not hold for the above process. In addition

(1) of Theorem 3.2 fails. It is conceivable that if (1) holds then

{1a: n > 1) must be a Markov chain.
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